Formation & Growth of SMBHs: Simulations in General Relativity

Stuart L. Shapiro

University of Illinois at Urbana-Champaign

Physics and Astrophysics of Supermassive Black Holes
Santa Fe, New Mexico
July 9–14, 2006

Introduction and Motivation

Compelling evidence:

- \bullet SMBHs with $M \sim 10^6 10^{10} M_{\odot}$ are the engines that power quasars and AGNs.
- SMBHs reside in most, & perhaps all, bulge galaxies, including the Milky Way.

Still unknown:

cosmological origin of seed SMBHs:

- hydrodynamical stellar collapse?
- collisionless matter collapse?
- SIDM halo collapse?
- massive scalar field or GW collapse?

Strategy:

BHs are strong-field objects governed by Einstein's theory of general relativity.

- ⇒ GR simulations of
 - collapse to BHs,
 - BH binary merger and recoil,
 - BH accretion, etc.,

may help reveal how, when and where SMBH seeds form and grow.

Clues and Constraints

• 1st SMBHs:

Existence of QSO SDSS 1148+5251 at $z_{QSO}=6.43$ (Fan et al. 2003) \Rightarrow 1st SMBHs formed by t=0.87 Gyr in Λ CDM model.

ullet Broad-line quasars with 0.1 $\leq z \leq$ 2.1: SDSS sample of 12,698 quasars obeys the Edd limit, $L_{bol} \lesssim L_{
m E}$. (McLure & Dunlop 2004)

• Radiation efficiency:

The luminosity density of quasars is $\sim 10\%$ the local SMBH mass density.

(Soltan 1982; Yu & Tremaine 2002; Elvis et al. 2002)

- ⇒ An appreciable fraction of the mass of a SMBH is likely acquired by (baryonic) disk accretion.
- \Rightarrow The more massive the initial seed, the less time is required for it to grow to SMBH size by $z_{QSO} \geq 6.43$.

Stellar Progenitors of SMBH Seeds

• One Possibility: a SMS, $M \gtrsim 10^4 M_{\odot}$. Form when contracting gas builds up sufficient rad'n pressure to inhibit fragmentation & prevent star formation. (e.g., Gnedin 2001; Bromm & Loeb 2003)

GR rotating collapse simulations:

max rotation yields a SMBH + disk, $M_h/M\approx 0.9,\ a_h/M_h\approx 0.75,\ M_D/M\approx 0.1.$ (Shibata & Shapiro 2002)

- Problems:
 - SMSs have never been observed.
 - Simulations \Rightarrow 1st generation stars are Pop III stars, $M \approx 10^2 10^3 M_{\odot}$, not SMSs.

(Bromm et al. 2002; Abel et al. 2002; Yoshida et al. 2006)

Most conservative hypothesis:

Pop III stars \to BH seeds (Madau & Rees 2001): $M\sim 60-140,~\&~\gtrsim 240 M_{\odot}$ (Heger et al. 2003); $M\lesssim 600 M_{\odot}$ (Onukai & Palla 2003; Yoshida et al. 2003)

3+1 (ADM) Field Eqns

$$ds^{2} = -\underbrace{\alpha^{2}}_{\text{lapse}} dt^{2} + \underbrace{\gamma_{ij}}_{\text{3-metric}} (dx^{i} + \beta^{i}dt)(dx^{j} + \underbrace{\beta^{j}}_{\text{shift}} dt) \ .$$

Constraint Equations

$$R + K^2 - K_{ij}K^{ij} = 16\pi\rho$$
 (Hamiltonian),
 $D_j(K^{ij} - \gamma^{ij}K) = 8\pi S^i$ (Momentum).

Evolution Equations

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + D_i \beta_j + D_j \beta_i ,$$

$$\partial_t K_{ij} = \alpha R_{ij} + \dots - 8\pi \alpha [S_{ij} - \frac{1}{2} \gamma_{ij} (S - \rho)] .$$

Gauge Quantities

$$\alpha$$
, β^i

Modified ADM Field Eqns

Shibata & Nakamura 1995; Baumgarte & Shapiro 1999
(BSSN)

Conformal Decomposition: "York-Lichnerowicz split"

$$\tilde{\gamma}_{ij} = e^{-4\phi}\gamma_{ij}$$
, where $e^{4\phi} = \gamma^{1/3}$, $\tilde{A}_{ij} = \tilde{K}_{ij} - \frac{1}{3}\tilde{\gamma}_{ij}K$

Connection Functions

$$\tilde{\Gamma}^i \equiv \tilde{\gamma}^{jk} \tilde{\Gamma}^i{}_{jk} = -\partial_j \tilde{\gamma}^{ij} ,$$

Evolve

$$\tilde{\gamma}_{ij}, \quad \tilde{A}_{ij}, \quad \phi, \quad K, \quad \& \quad \tilde{\Gamma}^i$$

Advantage

$$\begin{split} \tilde{R}_{ij} &= -\frac{1}{2} \underbrace{\tilde{\gamma}^{lm} \partial_m \partial_l \tilde{\gamma}_{ij}}_{\text{`Laplacian'}} + \underbrace{\tilde{\gamma}_{k(i} \partial_j) \tilde{\Gamma}^k}_{\text{remaining 2nd derivs}} + \cdots \;, \\ &\Rightarrow \quad \partial_t^2 \tilde{\gamma}_{ij} \sim \partial_t \tilde{A}_{ij} \sim \tilde{R}_{ij} \sim \nabla^2 \tilde{\gamma}_{ij} \end{split}$$

• Result: dramatically improved stability

Collapse of A Magnetized Hypermassive Star

Duez, Liu, Shapiro, Shibata & Stephens (2006a,b): axisymmetry

- Initial Seed B Field
 - Topology: purely poloidal
 - Strength: $C \equiv \max \left[\frac{B^2}{4\pi P} \right] = 2.5 \times 10^{-3}$
- B-field Amplification:
 - Winding: $\tau_A = R/v_A$
 - MRI: $au_{
 m MRI} \sim P_c \ll au_A$ (Balbus & Hawley 1991)
- Computational Challenge
 - Wavelength: $\lambda_{\text{MRI}} = 2\pi v_A/\Omega \sim R/10$
 - Resolution Requirement: $\Delta \lesssim \lambda_{MRI}/10$
 - \Rightarrow To follow collapse, the evolution time must exceed $t_A \sim 75 P_c \sim 3000 M$.
 - \Rightarrow To resolve the fastest growing MRI mode, we require N^2 zones with $N \gtrsim 400$.

Central Engines For GRBs?

Duez, Liu, Shapiro, Shibata & Stephens 2006a,b*, 2006c**

- GRBS: 2 classes (BATSE, Swift, HETE, Chandra, HST)
 - Long-Soft GRBs:
 - $\tau \sim 2 1000$ sec;
 - in star-forming regions (spirals);
 - associated with SNs;
 - massive star collapse: 'collapsars' ?
 - Pop III collapse analogs?
 - Short-Hard GRBs:
 - $\tau \sim 10$ ms -2 sec;
 - in low star-form. regions (ellipticals);
 - SN associations excluded;
 - NS-NSs → HMNSs*? BH-NSs?
- Exciting implications for Advanced LIGO!
 - Coincidence Detections:
 - GW bursts + GRBs;
 - reasonable event rates.
- Simulations in full GRMHD:
 - required & underway!**

SMBH Spin Evolution

- Significance:
 - efficiency of accretion & rate of SMBH growth depend sensitively on a/M.
- Initial Conditions: Pop III stellar collapse GR simulations $\Rightarrow 0 \le a/M \lesssim 0.8$ (Shibata & Shapiro 2002; Shibata et al. 2006)
- Spin-up by major mergers Following binary merger, $M \& a/M \approx$ values at ISCO $\Rightarrow a/M \approx$ 0.8 0.9 for $M_1 = M_2$ (3PN & num GR calculations). (Damour, Cook, Baumgarte, Grandclement, ...)
- Spin-down by minor mergers BH merging with many smaller BHs, isotropically distributed, $\Rightarrow a/M \sim M^{-7/3}$. (Hughes & Blandford 2003; Gammie et al. 2004)
- Spin-equilibrium via accretion a/M=1.0, standard thin disk (Bardeen 1970); a/M=0.998, + photon recap. (Thorne 1974). $a/M\approx 0.95$, turbulent MHD disk (De Villiers et al. 2004; Gammie, Shapiro & McKinney 2004).

GRMHD Flow Snapshot for a/M = 0.75

McKinney & Gammie (2004); Gammie, Shapiro & Mckinney 2004

SMBH Growth By Accretion

• Efficiencies:

$$\epsilon_M \equiv L/\dot{M}_0c^2 = \epsilon_M(a/M), \qquad \epsilon_L \equiv L/L_E,$$
 $\frac{dM}{dt} = (1 - \epsilon_M)\frac{dM_0}{dt}$ $L_E = \frac{4\pi M\mu_e m_p c}{\sigma_T} \approx 1.3 \times 10^{46}\mu_e M_8 \text{ erg s}^{-1}.$

Mass and Spin Evolution:

$$\frac{dM}{dt} = \frac{\epsilon_L (1 - \epsilon_M)}{\epsilon_M} \frac{M}{\tau}, \quad \tau \equiv \frac{Mc^2}{L_E} \approx 0.45 \mu_e^{-1} \text{ Gyr}$$

$$\frac{d(a/M)}{dt} = \frac{\epsilon_L}{\epsilon_M} \frac{s}{\tau}, \quad \text{where, e.g.,}$$

$$s = \tilde{l}_{\rm ISCO} - 2 \frac{a}{M} \tilde{E}_{\rm ISCO} \quad \text{(stand. thin disk),}$$

$$= 3.14 - 3.30 \frac{a}{M} \quad \text{(fit to MHD disk)}$$

• Mass Amplification at spin-equilibrium (s = 0): $M(t)/M(t_i) = \exp\left[\frac{\epsilon_L(1-\epsilon_M)(t-t_i)}{\epsilon_M}\right]$

Accretion-Driven Mass Amplification

ACDM


```
\epsilon_L = L/L_{\rm E} = 1; curve labels: \epsilon_M \equiv L/\dot{M}_0c^2 = \epsilon_M(a/M), a/M = (0, 0.95, 0.998, 1) \Rightarrow \epsilon_M = (0.057, 0.19, 0.32, 0.42) M_i/M_{\odot} = 100 - 600, M_f/M_{\odot} = 10^9; dashed = pure accretion; dotted = 10^4 merger amplification \times accretion.
```

Summary & Conclusions

• Key issues:

- cosmological origin of seed SMBHs?
- mass & spin evolution?
- role in structure formation?

Clues & constraints:

- QSO 1148+5251: z = 6.43, t = 0.87 Gyr
- $U_{QSO} \approx 0.1 \ \rho_{BH}c^2$
- $M_{BH} \sigma_*$ correlation
- ullet $M_{BH}-M_{bulge}$ correlation
- etc.

Numerical GR:

mature enough (at last!) to probe physics underlying cosmological formation & growth of SMBHs, e.g.,

- collapse to seed BHs;
- BH binary merger and recoil;
- gravitational wave generation;
- BH accretion;
- etc;